莱斯特华人网 | LeicesterBBS

 

 

搜索
莱斯特华人网 | LeicesterBBS 论坛 其他广告 | Other ADs “一对一”常识推翻百年集论和“没无穷大数” ...
查看: 2409|回复: 1
go

“一对一”常识推翻百年集论和“没无穷大数” [复制链接]

金钱
30  
魅力
0  
威望
11  
积分
11 
精华
帖子
7 
1#
发表于 2011-6-13 10:30 |只看该作者 |倒序浏览 |打印

对一”常识推翻百年集论和“没无穷大数”


——证实伟大科学家庞加莱百年前的伟大预见

黄小宁(华南师大南区9-303 ,邮编510631)

【摘要】“一一配对”常识如太阳赶走(使人看不见真相的)漫漫长夜,让“深藏”5千年的无穷大自然数n及其倒数1/n<ε一下子暴露出来(从而化解300年无穷小危机与消除极限论百年糊涂话),使统治数学的集论一下子现出庞加莱所认为的百年病魔原形。如化学曾被错误燃素说统治百年一样,数学也...。揭示没有用而不知的起决定性作用的无穷大(小)数就没有微积分。强调教科书的重大错误所造成的重大经济损失一点也不亚于经济建设中的重大错误所造成的经济损失。

[关键词]无穷大数及其倒数;推翻百年集论;化解300年无穷小危机;庞加莱百年伟大预见;极限论;一一配对



《羊城晚报》2010.4.15报道称英国近日评选出“他们的革命性发现改变着我们的世界”的十位数学天才,康脱榜上有名,理由:其创立了具有划时代意义的集论,从根本上改造了数学的结构,促进了数学的其他许多新的分支的建立和发展,还给逻辑学带来了深远影响。李醒民等编《10个震撼人心的科学发现》中百年集论名列各重大发现之首,其在数学中的地位相当于百年相对论在物理学中的地位。然而本文第3节由“一对一”常识仅用13字符就推翻了百年集论。1908年著名数学和物理学家庞加莱富有远见卓识地作出极其惊人的伟大科学预见:下一代人将把集论当作一种疾病且人们已经从中恢复过来了。注意到这是集论问世30年后的预言,故有非凡洞察力的庞大师也许曾也被集论迷惑,但经刻苦钻研多年后终于觉悟而在一片叫好声中远超时代与后人地清醒坚信:凡违反真正常识的理论必是严重危害科学的病态理论——即使整整一代人都没有推翻此举世公认“真理”的回天力。

1.存在奇数与偶数不一样多的是假N

非0自然数集(列)N的所有偶数2n组成A={2n}各项都换为(2n-1,2n)就得数偶N={(2n-1,2n)},其奇数与偶数一样多而可如此一一配对:(1,2)(3,4)…;N的数x都换为x+1后再增新首项1得N′:1,(2,3)(4,5)…中的1没N′的偶数与之配对,除非拆散某对数——表明N′中奇数比偶数多且仅多一个(故N′是似是而非的假N!)——表明同是无穷数列的相应{2n-1}的项比A的项多。故“有胡子的不一定是爹。”{n≥1}不一定是N而有可能是其真子(扩)集,N′有2n-1ÏN

2.关于“一对一”的起码逻辑学常识和h常识——对无穷序列的认识存在重大错误


附件: 你需要登录才可以下载或查看附件。没有帐号?註 冊

金钱
30  
魅力
0  
威望
11  
积分
11 
精华
帖子
7 
2#
发表于 2011-6-13 10:31 |只看该作者
设A~A表示两A的元已一一配对:x x。起码逻辑学常识:无穷多对“夫妻”之间互相任意“换妻”必还是可一一配对。例序列P={□1□2□3...}中各“旅馆房间”□与N各数已一一配对,各数之间无论如何调房都不能改变□与数双方的一一配对性(以下简记为:~性)。鲜明对比的是若任一方单独增减员就必打破~性。例增一□得□□1□2...中的□就没数与之配对,除非拆散某对“夫妻”;此序列各数都左移一格得P′={□1□2□3...}——百年假象:P′=P。殊不知□与1配对,原□1就被拆为□,再拆散□2…,再拆…,…——总保持有一对“夫妻”被挖去数而成□,故在无穷远处必有一肉眼看不到的□。人有逻辑推理能力,慧眼能洞察序列所有成员的配对情况而不被因目光太短浅而无力认识与把握“无穷”的肉眼所骗,不被“拆东补西”术迷惑。又如给定的无穷序列J各项分别都占有一空间位置“房间”,J的任何非首项都可改为是首项,别的任何项都可改为是项2,...都不能改变项的位置与项数n的~性。
    道理很简单:无穷集C~D而不~E完全是由于C与D分别包含一样多个元而至少比E多或少含一个元,称D与C等容(两集容量相等)。而改变配对方式并没使各集的元有任何增减,当然就不会改变其“一样多”性,当且仅当改变此性才能打破双方的可~性。例如数偶列{(-1,1)}的所有数的和s=(-1+1)+(-1+1)+…=0是因s中的1与-1一样多而可一一配对,谁也不能将各不同位置上的1与-1重新配对而使s≠0(所以两N的元n一一配对成数偶列{(n,n)},谁也不能将各不同位上的n重新配对而使有部分n没配偶∈N)。鲜明对比的是在等号两边加1或(-1)就打破了1与-1一样多的格局使s±1=0±1=±1而≠0,两边再+一相应项就恢复了…。盖因只有增减项才能改变序列的项的多少而使...。故以上形象直观地显示以下革命道理:
引理1:若C~D则无论用何配对方式C(D)各元都必可同时都有“配偶”∈D(C),正如集论常识c“若C~N则C的元都可配上非0自然数号码记为元1,元2,...;其中C的任何元都可是元1,确定元1后,其余元的哪一个都可是元2,…;C任一元可轮换地与N每一元配对即配对的方式与N的元一样多。”一样;若至少有一元不可有配偶∈对方集,就证明C~D不真。
证:让C、D的元一一配对后再让任一方的元互相任意对调位置并没改变双方元的~性。例序列N:1,2,3,4,...(各数n都在n号位)中的1与2对调得2,1,3,4,5,...中的1与4对调得2,4,3,1,5,6,...中的3与6对调得2,4,6,1,5,3,7,8,... 中的...——有序将各2n∈N都调到2n/2号位不能改变N各数与各位置号码数n∈N的~性,故各2n-1∈N也都有位置号码an∈N与之配对;注意到各数列都由N的全部数组成,故各2n都在n号位的数列F的各奇数2n-1∈N都位于F一切2n的后面而使1与2之间包含N一切非2偶数;...——“凡有首项的无穷序列的各非首项都与首项相隔有穷多个项”是重大错误。证毕。
注:两不交的无穷集a、b的并是直和a+b=H是a(b)的真扩集,H-a=b。H~H中若有元同时还另有配偶ÏH,那就是搞“重婚”了。
引理2:任何无穷集a~a的真扩集H=a+b必不~a,原因是b有多少个元H就比a多多少个元。
证:假设H=a+b~a′=a则据引理1H的一部分a各元都有配偶∈a′~a=a′的同时H另一部分b各元也有配偶∈a′——a′有元“重婚”!故假设不成立。因是增元而打破“一样多”,故必是…。证毕。
h常识:⑴无穷多对“夫妻”中的任一方单独减元后必打破双方的~性;因甲方减了多少个元,乙方立刻就有多少个元无配偶∈对方。⑵x与y配成一对数,配对前后的x是同一x。同样,两N的元n一一配对成数偶集{(n,n)}=N∪N=N,配对前后的N是同一N,因为各配对前后的元是同一元,而各元都相同的两集是同一集。这与P内的N=P外N(各元都没和□配对)是同一道理。将N换为下述D得同样结论。据此,N的任何一部分都不可“住满”P的□。
P内数n:都换为n+1得□2□3□4...;或都左移一格得1□2□3...;…——h常识表明这都是百年假象:N的一部分数可“住满”P的□。
3.h定理:任何无穷集D的任何真子集d都不可~D
证1:据引理2 d的真扩集D不~d——13字符推翻百年集论!证2:据h常识D~D中的一D减元成为dÌD不可~另一D。证毕。
4.让5千年都一直无人能识的自然数一下子暴露出来
N={2n}+{2n-1},据引理1和…有:
N={n}++{an}。上、下2等式一目了然地显示上N各2n(2n-1)都有自然数配偶n(an)在其“脚下”,下N中:各an都是无穷大自然数>{n}的一切n,故此{n}只是N的一半——对N~N进行换偶:2n n,2n-1 an就让自识自然数5千年来都一直无人能识的自然数an和假N一下子原形毕露。重大核心错误“{n}无上界∈N”等等,会使人以其为核心滚雪球似地推出错上加错的一系列更重大错误。数偶列N={(2n-1,2n)}各数都被其上述“脚下”的配偶置换就有{(an,n)}——5千年来一直都在无穷远处的an一下子变得近在眼前。
设N=A+B={2n}+{2n-1}的元与A′=A={2n}的元2n已一一配对即有N~A′,据引理1和…,A′=A~AÌN的同时A′还可有一样多的元2n与BÌN的元2n-1一一配对——矛盾!关键是A={2n}~{n}中的{n}ÌN。
5.否定无穷数使“精确”极限论存在百年糊涂话
可见存在无穷小正数1/n(n是与1相隔无穷多个n的无穷大正整数)<任何有穷正数ε。故5千年数学一直对数的认识存在重大缺陷与错误。李政道:“最重要的是要会提出问题,否则将来做不了第一流的工作。”如[1]所述,对极限论最关键要弄清h问题:j式:
0<正无穷小ρ=1/n<“任意取定”的正数ε
中的ε是在哪一范围内任取的数?是否在(1,∞)内任取?能否在所有正数中任取?不能说清此一不通则百不通的问题就表明极限论是含混不清的。j式表示正实变量ρ所取各正数ρ都<ε——极限论本身不得不肯定有无穷小正数<ε;数列{1/n}“从某项起以后的各正数项1/n都<ε”也明确表示..。显然正数x<ε的极限都是0<ε的极限0,但同时也是正数x本身。然而“任何正数x的极限都是x而非0”“定数中只有0才是无穷小”又否定有<ε的正数——构成百年糊涂话:有总取正数的ρ<ε却又无正数ρ<ε。把学而思的学生搞得晕头转向,但为了考试人们不得不扼杀自己的正常思维能力而当“传声筒”。其实,ε是在所有有穷正数中任取的数。“说恒取自然数的n可变至总>‘任给定正数’M就是间接肯定有无穷大自然数n>M。用而不知地失察此类起决定性作用的数,使数学自相矛盾,正如2500年前数学家对无理数用而不知一样。没有>M的数何来恒>M的变量(至少可取2个数的量称为变量)及其倒变量?从而又何来微积分?!极限论断定无穷数列1,2,…,n,…中有数n>M[2]。”
数学史表明没无穷数就没高等数学。“欧拉毫不犹豫地承认无穷小的数和无穷大的数都是客观存在的,并且如此纯熟地应用这些概念…[3]”标准分析之前2千多年的数学一直“非法”使用未经严格证明的无穷数进行推理计算轻而易举地攻克了不用无穷数就无法解决的一系列世界难题,但对这类“更无理”数一直无力实现由感性认识跃升到理性认识而回答不了别人的质疑,导致出现了无穷小危机而使这类起决定性作用的数名亡实存。
6.结束语
百年集论百年来浪费了亿亿万学生大量的宝贵时间与精力以及亿亿万元宝贵学费,更要命的是它的重大误导作用:误人推出更重大错误。育人课本的重大错误造成的重大经济损失一点也不亚于经济建设的重大错误造成的经济损失;是否及时纠正与每一人的切身利益息息相关。
             参考文献
[1]黄小宁,极限论总极难学真因:人有抵制思想混乱学说本能[J],科技信息,2010(33)。
[2]黄小宁,在超凡越圣的伟人眼中无穷大n总≈0——符合实际的全新数学必取代几千年井底蛙数学[J],科技信息,2008(2):46.
[3][美]爱德华著,张鸿林译,微积分发展史[M],北京:北京出版社,1987:368。
[4]黄小宁,发现最小正数推翻百年集论消除2500年芝诺悖论——中学重大错误:将无穷多各根本不同的点集误为同一集[J],中国科技信息,2010(18)。
[5]黄小宁,中学极重大根本错误:无穷数列必无末项——“一对一”常识推翻五千年科学“常识”:无最大自然数[J],科技信息,2011(1)。
[6]黄小宁,驱5千年迷雾现统治数学的集论百年病魔原形[J],今日科苑,2009(16):267.
电联:13178840497 E-mail:hxl268@163.com(hxl中的l是英文字母)



‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 註 冊

Archiver| Leicester BBS

GMT, 2024-12-24 18:30

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.